Irrigating for Nutrient Efficiency

KRWQC Annual Workshop

Mae Culumber PhD UC Cooperative Extension Nut Crops Advisor

Fresno County

High Efficiency

Low Efficiency

Fertilizer form: Nitrate

- Eventually excess N in all nitrogen sources can be lost as nitrate
- Negatively charged ion does not adsorb to the neg. charged soil particles found in most soils
- Nitrate ions move freely with drainage water and are easily leached

Factors Influencing Nutrient Efficiency

- Irrigation System Distribution Uniformity & Efficiency
- Soil Texture
- Crop Uptake Pattern Dynamics
- Fertilizer Timing
- Irrigation scheduling

Factors Influencing Nutrient Efficiency

- Irrigation System Distribution Uniformity & Efficiency
- Soil Texture
- Crop Uptake Pattern Dynamics
- Fertilizer Timing
- Irrigation scheduling

Distribution Uniformity

 $\mathsf{DU} = \frac{Average \ low \ 25\% \ volume \ measured}{average \ of \ all \ volumes \ measured}$

Distribution Uniformity

DU	Water Applied High ¼ of orchard	Water Applied Low ¼ of orchard	Difference across orchard one irrigation	Dif irı	fference thirty rigation cycles	;e n
		Inches	applied			-
90	1.12	0.90	0.22		6.6	
80	1.27	0.80	0.47		14.1	
70	1.42	0.70	0.72		21.6	

Table: A. Fulton, B. Sanden

Distribution Uniformity & Efficiency

- A. areas that receive more or less water, receive more or less fertilizer
- B. Good system DU with over irrigation will lead to nutrient leaching across the field
- C. Good DU with good irrigation scheduling = even nutrient application and retention in the rootzone

Distribution Uniformity & Efficiency

- Aerial imagery indicates poor DU and poor irrigation efficiency
- Blue areas: likely receiving more water and nutrients than the crop requirement
- Red areas: insufficient irrigation and nutrition

Irrigation System Evaluation and Maintenance

- Small micro-emitters openings highly susceptible to clogging and leaks
- Routine inspection and maintenance is essential
 - Examine nozzles and wetting patterns
 - Flush lines and clean filters
 - Install and check flow meters and inlet pressure sensors

Factors Influencing Nutrient Efficiency

- Irrigation System Distribution Uniformity & Efficiency
- Soil Texture
- Crop Uptake Pattern Dynamics
- Fertilizer Timing
- Irrigation scheduling

Irrigation systems are most efficient when the application rate matches infiltration and permeability of the soil

Factors influencing permeability

- Soil pore size and volume
- Aggregates
- Plant roots
- Soil cultivation practices
- Soil and water salinity

water movement in an uncompacted, wellstructured soil

https://ucanr.edu/repository/fileaccess.cfm?article=54262 &p=%20NOEUZX

Storage capacity and rate of moisture depletion dependent on soil texture

- Sand has largest particle size but lower surface area than silt and clay
- Small particles have more surface area relative to volume
- More surface area = more water retention
- Coarse textured soils have greater permeability

Soil texture influences permeability

Permeability Class	Inches / hour	Soil texture				
Very slow	0.1	clay				
slow	0.1-0.2	sandy clay, silty clay				
Moderately slow	0.2 - 0.8	clay loam, sandy clay loam,				
		silty clay loam				
Moderate	0.8 - 2.5	very fine sandy loam, loam,				
		silt loam, silty clay loam, silt				
Moderately rapid	2.5 – 5	sandy loam, fine sandy loam				
Rapid	5 - 10	sand, loamy sand				
Very Rapid	> 10	coarse sand				

Irrigation System % wetted area for drip

- Easy to over-irrigate (lose water to deep percolation or exceed infiltration rate)
- Need to consider the % of wetted area influence by the system and soil type

Factors Influencing Nutrient Efficiency

- Irrigation System Distribution Uniformity & Efficiency
- Soil Texture
- Crop Uptake Pattern Dynamics
- Fertilizer Timing
- Irrigation scheduling

Crops use different amounts of nutrients at different growth stages

Uptake depends on nutrient concentration and demand by the plant for a specific nutrient at that time

Nitrogen concentrations in harvested

plant parts - Update 02/2024

Includes updated values for

- Cotton Acala
- Cotton Pima
- Kiwi
- Lemons
- Mandarins
- Nectarines

- Oranges Navel
- Oranges Valencia
- Sorghum Grain
- Perennial parts of cherry and citrus trees
- Daniel Geisseler February 28, 2024

Average N concentrations and observed variability from scientific research and on farm reporting

Data sources and number of observations.

Source	Sites		Years sam	Observations	
	Location	n	Years	n	
Variety: Nonpareil					
Brown et al., 2012; Brown, 2013	California	1	2008	1	4
Brown et al., 2012; Brown, 2013	California	4	2009	1	7
Brown et al., 2012; Brown, 2013	California	5	2010	1	8
Brown et al., 2012; Brown, 2013	California	1	2011	1	4
Brown et al., 2012; Brown, 2013	California	1	2012	1	4
Variety: Monterey					
Brown et al., 2012	California	1	2011	1	4
Overall		5		5	31

http://geisseler.ucdavis.edu/Geisseler_Report_U2_2024_02_ 28.pdf

Flowering, fruit set, and early leaf emergence:

N provided by remobilization of nutrient reserves from roots and perennial woody biomass

As leaves expand and root growth accelerates, reserves are depleted, and soil N uptake increases rapidly

Match N applications with tree uptake

By 101–126 DAFB, kernels have gained 60–70% of their total weight, then rate of fruit N accumulation decreases (Muhammad et al. 2020)

Too early and too much in a single set increases leaching potential

Potential Consequences of Large Applications

- 50 lbs N /ac shanked into soil followed by flood mid-April, scorched mature almond canopy
- Too much in a single shot can burn tree roots and leaves, and cause nut drop

Fresno County - Early Spring

- Increased water availability in the early spring months following a wet winter often coincides with N application
- Increases loss of nutrients from the rootzone

- Simulated analysis found more frequent smaller injections also decrease N losses
- Large applications of water largest factor contributing to N leaching

Simulated N application to a Corn Field (Burt, 2018)

Factors Influencing Nutrient Efficiency

- Irrigation System Distribution Uniformity & Efficiency
- Soil Texture
- Crop Uptake Pattern Dynamics
- Fertilizer Timing
- Irrigation scheduling

Fertigation applications must have even distribution across the field and with soil depth

- A quick injection, risks leaching mobile nutrients
- Injecting all the fertilizer early in the irrigation cycle can leach nitrate below the roots
- Injecting at the end of the irrigation cycle may not sufficiently move nitrate into the root zone
- Injecting in the middle-end of set results in most uniform distribution
- Consider how soil type and permeability impacts movement

Distance From Emitter (cm)

Figure 4. Effect of fertigation timing in the irrigation cycle on nitrate distribution in the soil (Hanson 2004).

Chemical Travel Time

- Estimate will determine the best injection timing within the irrigation set
- Chemical travel time within the irrigation system from the injection to the last emitter can be calculated with the system design, pipe lengths and sizes

Chemical Travel Time

Figure 3. Estimating travel and flush times by injecting colored food dye.

Cahn et al.

Chemical Travel Time

- Most fertilizers increase the salinity of the water
- Inject fertilizer and measure electrical conductivity (EC) at the most distant emitter from the injection point to determine travel time
- Note the time between when EC increases and goes down to determine the time needed to flush the system

Factors Influencing Nutrient Efficiency

- Irrigation System Distribution Uniformity & Efficiency
- Soil Texture
- Crop Uptake Pattern Dynamics
- Fertilizer Timing
- Irrigation scheduling

Methods and Tools for Irrigation scheduling

- Water budget (Compare ETc to applied water, in-season rain, and soil storage)
- Soil moisture depletion (sensors, shovel and texture by feel)

• Orchard water status (pressure chamber and or automated sensors for midday stem water potential)

UCANR Х Applied Water LINCOLN 30 \equiv 25 20 nches 15 10 Aug '19 Oct '19 May '19 lun '19 Jul'19 Sep '19 Water Applied Recommended Highcharts.con Close

Water Budget

CropManage –

https://cropmanage.ucanr.edu/login

- Uses evapotranspiration (ET) data from CIMIS adjusted with crop coefficient or can input onsite weather station information to make a weekly recommendation
- Can be used to track fertilizer inputs, soil, and tissue analyses, and yield information to calculate future management recommendations
- Workshop January 29th at Kearney Research Station, Parlier

Maximum water depth applied per irrigation

- soil texture and available water holding capacity per foot soil (W_a)
- average (Z) or effective rooting (Z_E) depth
- management allowable depletion (MAD) for the crop
- Irrigation system efficiency (Eff_A)
 - Surface drip 85-95%

Water applied = [(MAD \div 100) x W_a X Z_E] \div Eff_A

Soil texture and water availability

Table 1. Average available water-holding capacity (Wa) for various soil textures

So	Wa	
General description	Texture class	(Inches of water per foot of soil)
	coarse sand	0.5
light, sandy	fine sand	0.9
	sandy loam	1.2
	fine, sandy loam	1.5
medium, loamy	loam	1.8
	silt loam	2.0
	clay loam	2.2
heavy, clay	clay	2.4
	peat/muck	6.0

Source: Modified from U.S. Bureau of Reclamation, Agrimet Irrigation Guide website, (https://www.usbr.gov/pn/agrimet/irrigation.html).

Water applied = [(MAD \div 100) x W_a X Z_E] \div Eff_A

Calculate irrigation system output: gph to inches per hour

Water Application Rate Calculator for Drip and Microsprinklers

Home > Et Reports > Et Calculators

Posted on August 28 2019 by Allan Fulton Last modified on November 21 2022

This calculator computes the hourly water application rate of lower flow drip or microsprinkler irrigation systems. Use this calculator if the drippers or microsprinklers are rated in gallons per hour (GPH).

Enter your orchard specific information into the yellow boxes and the results will display under the 'Calculation Results' heading below.

Information Needed:								
Flow rate of drip emitter or microsprinkler in gph								
Number of drippers or microsprinklers per tree								
Number of trees per acre								
Calculations results:								
Applied water (gallons per acre per hour)	0							
Applied water (inches per hour)	0							

See our FAQs for more information on using Weekly Crop ET Reports or check our other ET calculators if you need a different conversion.

Emitters per tree x trees ac x gph per emitter ÷ 27,154 gallons per acre inch

https://www.sacvalleyorchards.com/et-reports/et-calculators/application-rate-calculator-drip-micros/

Maximum water depth applied per irrigation

Water applied = [(MAD \div 100) x W_a X Z_E] \div Eff_A

MAD = 50%

W_a sandy loam = 1.2 inches

 Z_E = effective rooting depth 3 ft

 $Eff_A = 95\%$

Water applied = [(50 ÷ 100) x 1.2 inches X 3 ft] ÷ 0.95 = ~1.9 inches

Max. Water applied per irrigation = No more than 2.0 inches

Calculate the maximum irrigation time: Example, if application rate is 0.05 in/hr 2.0 in ÷ 0.05 in/hr = maximum irrigation time ~40 hrs

Note* Shorter more frequent sets may be necessary to avoid run off and to meet ETc requirements

<u>Weekly ETc</u> <u>reports</u> DWR & UCCE

 Previous week's ETc (acre-inches) based on CIMIS station data and next week's prediction based on the 30-year average for a variety of crops **University** of **California** Agriculture and Natural Resources Making a Difference for California

UCCE/DWR Weekly Crop Water Use Report

WEEKLY SOIL MOISTURE LOSS IN INCHES (Estimated Crop Evapotranspiration or ET_C) 07/16/21 through 07/22/21

Crops (Leafout Date)	#148 Merced				#39 Parlier		#258 Lemon Cove		ove	
	7/16-7/22	Accum'd	7/23-7/29	7/16- 7/22	Accum'd	7/23-7/29	7/16-7/22	Accum'd	7/23-7/29	
	Water	Seasonal	Estimated	Water	Seasonal	Estimated	Water	Seasonal	Estimated	
	Use	Water Use	ETc	Use	Water Use	ETc	Use	Water Use	ETc	
Almonds (3/5) *	1.98	28.07	2.03	2.05	29.64	1.92	1.91	27.96	1.94	
Pistachio (4/16) * **	2.05	22.32	2.10	2.12	23.76	1.99	1.98	22.24	2.01	
Citrus (2/1)	1.20	23.35	1.26	1.25	24.49	1.15	1.17	23.12	1.17	
Raisin Grapes (3/12) (11 ft. row spacing)	1.56	18.03	1.61	1.61	19.26	1.50	1.50	18.02	1.52	
Vinegrapes (3/12) (10 ft. spacing on California Sprawl Trellis) ***	1.77	19.46	1.82	1.85	20.74	1.71	1.71	19.41	1.73	
Valnuts (4/5)	2.12	24.34	2.17	2.19	25.82	2.06	2.04	24.24	2.08	
tone Fruit (3/10)	1.91	20.89	2.08	2.00	22.23	1.97	1.85	20.85	1.99	
ast 7 days precipitation (inches)		0.00			0.00			0.00		
accumulated precipitation (inches) (1/1/2021)		5.54			3.66			3.90		

Dates in parentheses above, indicate leaf out or starting date for ET accumulation for the specific crop

* Estimates are for orchard floor conditions where vegetation is managed by some combination of strip applications of herbicides, frequent mowing or tillage, and by mid and late season shading and water stress. Weekly estimates of soil moisture loss can be as much as 25 percent higher in orchards where cover crops are planted and managed more intensively for maximum growth.

** Very vigorous, non-salt affected peak season pistachio Kc can be as high as 1.19 - resulting in about 8% greater water use than shown in these tables.

Crops #148 Merced #39 Parlier #258 Lemon Cove System Efficiency>> 65% 75% 85% 95% 65% 75% 85% 95% Almonds (3/5) 3.0 2.6 2.3 2.1 3.2 2.7 2.4 2.2 2.9 2.5 2.2 2.0 Pistachio (4/16) 3.2 2.7 2.4 2.2 3.3 2.8 2.5 2.2 3.0 2.6 2.3 2.1 Citrus (2/1) 1.8 1.6 1.4 1.3 1.9 1.7 1.3 1.8 1.6 1.4 1.2	PA	PAST WEEKLY APPLIED WATER IN INCHES, ADJUSTED FOR EFFICIENCY '											
System Efficiency >> 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% 65% 75% 85% 95% Almonds (3/5) 3.0 2.6 2.3 2.1 3.2 2.7 2.4 2.2 2.9 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 2.0 2.5 2.2 <th2< th=""><th>Crops</th><th></th><th>#148 Merce</th><th>ed</th><th></th><th></th><th>#39 Parlier</th><th></th><th></th><th></th><th>#258 Lemo</th><th>n Cove</th><th></th></th2<>	Crops		#148 Merce	ed			#39 Parlier				#258 Lemo	n Cove	
Almonds (3/5) 3.0 2.6 2.3 2.1 3.2 2.7 2.4 2.2 2.9 2.5 2.2 2.0 Pistachio (4/16) 3.2 2.7 2.4 2.2 3.3 2.8 2.5 2.2 3.0 2.6 2.3 2.1 Citrus (2/1) 1.8 1.6 1.4 1.3 1.9 1.7 1.5 1.3 1.8 1.6 1.4 1.2	System Efficiency >>	65%	75%	85%	95%	65%	75%	85%	95%	65%	75%	85%	95%
Pistachio (4/16) 3.2 2.7 2.4 2.2 3.3 2.8 2.5 2.2 3.0 2.6 2.3 2.1 Citrus (2/1) 18 16 14 13 19 17 15 13 18 16 14 12	Almonds (3/5)	3.0	2.6	2.3	2.1	3.2	2.7	2.4	2.2	2.9	2.5	2.2	2.0
Citrus (2/1) 18 16 14 13 10 17 15 13 18 16 14 12	Pistachio (4/16)	3.2	2.7	2.4	2.2	3.3	2.8	2.5	2.2	3.0	2.6	2.3	2.1
$(1.0 \ 1.0 \ 1.4 \ 1.5 \ 1.5 \ 1.5 \ 1.5 \ 1.5 \ 1.6 \ 1.0 \ 1.4 \ 1.2$	Citrus (2/1)	1.8	1.6	1.4	1.3	1.9	1.7	1.5	1.3	1.8	1.6	1.4	1.2
Raisin Grapes (3/12) (11 ft. row spacing)*** 2.4 2.1 1.8 1.6 2.5 2.1 1.9 1.7 2.3 2.0 1.8 1.6	Raisin Grapes (3/12) (11 ft. row spacing)***	2.4	2.1	1.8	1.6	2.5	2.1	1.9	1.7	2.3	2.0	1.8	1.6
Winegrapes (3/12) (10 ft. spacing on California Sprawl Trellis) *** 2.7 2.4 2.1 1.9 2.8 2.5 2.2 1.9 2.6 2.3 2.0 1.8	Winegrapes (3/12) (10 ft. spacing on California Sprawl Trellis) ***	2.7	2.4	2.1	1.9	2.8	2.5	2.2	1.9	2.6	2.3	2.0	1.8
Walnuts (4/5) 3.3 2.8 2.5 2.2 3.4 2.9 2.6 2.3 3.1 2.7 2.4 2.1	Walnuts (4/5)	3.3	2.8	2.5	2.2	3.4	2.9	2.6	2.3	3.1	2.7	2.4	2.1
Stone Fruit (3/10) 2.9 2.5 2.2 2.0 3.1 2.7 2.4 2.1 2.8 2.5 2.2 1.9	Stone Fruit (3/10)	2.9	2.5	2.2	2.0	3.1	2.7	2.4	2.1	2.8	2.5	2.2	1.9

1 The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip, 80%-95%; Micro-sprinkler, 80%-90%; Sprinkler, 70%-85%; and Border-furrow, 50%-75%

	PAST WEEKLY APPLIED WATER IN GALLON PER TREE OR VINE											
Crops		#148 Merce	ed			#39 Parlier				#258 Lemo	n Cove	
Almonds 115 Trees/A	708	614	543	496	756	638	567	519	685	590	519	472
Pistachio 106 Trees/A	797	673	598	548	822	698	623	548	747	648	573	523
Citrus 110 Trees/A	444	395	346	321	469	420	370	321	444	395	346	296
Raisin Grapes 566 Vines/A	115	101	86	77	120	101	91	82	110	96	86	77
Winegrapes 622 Vines/A	118	105	92	83	122	109	96	83	114	100	87	79
Walnuts 76 Trees/A	1179	1000	893	786	1215	1036	929	822	1108	965	857	750
Stonefruit 172 Trees/A	458	395	347	316	489	426	379	332	442	395	347	300
For further information concerning all counties receiving this report, contact	the Fresno	Co. Farm Ad	visor's offic	e at (559) 2	41-7526.				•			

Irrigation frequency

•MAD = 50% • $W_a = 1.2$ inches/ft • $Z_E =$ effective rooting depth 3 ft •Soil moisture at field capacity = 3.6 in •MAD = 3.6 x 50% = 1.8 in •If daily ETc in July = 0.3 inches •1.8 in \div 0.3 in/day = ~6 days to 50% MAD

For sandy loam soils don't go more than 6 days between sets in heat of summer to avoid depleting soil moisture below 50% MAD

HOW IS SOIL MOISTURE MEASURED?

<u>SOIL MOISTURE CONTENT</u> (%, in/ft, mm/m)

How much water is available per unit of soil?

% weight = (weight of water/weight of dry soil) x 100

% volume = (volume of water/volume of soil) x 100

SOIL MOISTURE TENSION (centibars, kPa)

How strongly water is held by soil particles

The higher the tension, the drier the soil and the more difficult is for trees to extract water

Depth = (inches of water/foot of soil) MOST COMMON AND PRACTICAL

SOIL MOISTURE CONTENT

Tracking soil moisture depletion for irrigation scheduling

Soil moisture content at which irrigation should occur (@ 50% of PAW depleted)

Soil Texture	Soil Moisture
	Content (%)
Sand	7
Loamy Sand	12
Sandy Loam	15
Loam	20
Silt Loam	23
Silty Clay Loam	28
Clay Loam	27
Sandy Clay Loam	24
Sandy Clay	22
Silty Clay	30
Clay	31

Tracking soil moisture depletion for irrigation scheduling

Soil moisture data – Granular Matrix Sensors

0 to 10 centibars = saturated soil

10 to 30 cb = soil has adequate moisture

30 to 60 cb = range for 50% moisture depletion for most soil textures

60 to 100 cb = 50% depletion for heavy clay soil

Begin irrigation when average for the top 2 ft sensors approach 50% depletion

Monitoring Soil Moisture Depletion and Refill – Feel Method

(For Reference, Google: USDA, Estimating Soil Moisture)

Sandier

More Clay

University of California Division of Agriculture and Natural Resources

ANR Publication 8503 | May 2014 UC http://anrcatalog.ucanr.edu

Using the Pressure Chamber for Irrigation Management in Walnut, Almond, and Prune

- Irrigating according to a water budget and soil moisture doesn't indicate how orchard trees respond to the applied water schedule
- Midday SWP <u>integrates</u> and quantifies how an orchard is responding to soil, water, and climatic conditions
- Can confirm and adjust assumptions made with soil moisture depletion method

Saturas's StemSense

FloraPulse

Plant Based Monitoring: Automated SWP

- Microtensiometer and osmometer sensors embedded in trunk connect to the vascular tissue
- Provide continuous SWP monitoring
- Data based on eight orchard locations suggest good agreement with pressure chamber

Summary

Irrigation System Distribution Uniformity & Efficiency

- Good DU with good irrigation scheduling = even nutrient application and retention in the rootzone
- Soil Texture
 - Important to consider for irrigation set times to avoid leaching

Crop Uptake Pattern Dynamics

• Apply N and irrigation to match uptake to increase efficiency and minimize losses

• Fertilizer Timing

- More frequent, small injections result in less leaching than large infrequent doses
- Irrigation scheduling
 - Deep percolation by over irrigation is the largest factor driving N leaching
 - Use water budget and plant water status to increase scheduling precision

References:

- Baram S., Couvreur V., Harter T., Read M., Brown P.H., Hopmans J.W., and D.R. Smart 2016 Assessment of orchard N losses to groundwater with a vadose zone. Agricultural Water Management 172 83-95.
- Burt, C., Fertigation Vol. 2. 2018, Irrigation Training and Research Center, San Luis Obispo, CA.
- Brown et al. 2014
- Cahn M. Hanson, B., and A. Baameur. Drip Fertigation: Achieving Uniform Applications <u>https://cemonterey.ucanr.edu/files/170985.pdf</u>
- Hanson, B., and J. Hopmans. 2006 Crop Nitrate Availability and Nitrate leaching under Micro-Irrigation for Different Fertigation Strategies. Final Report CDFA
- Muhammad S, S.B., Lampinen BD, Smart DR, Saa S, Shackel KA and Brown PH Nutrient Storage in the Perennial Organs of Deciduous Trees and Remobilization in Spring – A Study in Almond (Prunus dulcis) (Mill.) D. A. Webb. Front. Plant Sci., 2020. 11:658.
- Lightle, 2019. <u>https://www.wcngg.com/2019/05/06/distribution-uniformity-why-it-matters-what-influences-it-and-improving-yours/</u>
- Geisseler and Horwath <u>http://geisseler.ucdavis.edu/Guidelines/N_Uptake.html</u>

UCANR-CDFA Nitrogen and Irrigation Initiative (NII)

County Advisors are here to assist you! Madera/Merced: Phoebe Gordon, pegordon@ucanr.edu Fresno/Kings/Tulare: Mae Culumber, cmculumber@ucanr.edu Kern/Kings: Mohammad Yaghmour, mayaghmour@ucanr.edu Monterey/Santa Cruz: Michael Cahn, mdcahn@ucanr.edu Santa Clara/San Benito: Aparna Gazula, agazula@ucanr.edu

Mae Culumber cmculumber@ucanr.edu