## Nitrogen Efficiency and BMPs for Nut Crops

Nut and Grape Nutrient and Water Management November 8, 2018 Kings River Water Quality Coalition

> Mae Culumber PhD UC Cooperative Extension Nut Crops Advisor Fresno County



## Outline:

- Establish crop requirements
  - Almonds
  - Pistachio
  - Walnut

Research background on nutrition guidelines

Establish application rate and timing for young and mature bearing trees

 Example: Estimate demand, account for inputs and efficiencies, finalize and adjust management plan through the year

# Nutrient Management of Nut Crops

- Most of California nutrient management plans are based on nutrient removal
- Rates of macro and micro-nutrients take into account soil characteristics, cropping history, tissue analysis and field observations



# 14 Essential Elements for tree crops

#### Macronutrients

- Nitrogen
- Potassium
- Phosphorous
- Magnesium
- Calcium
- Sulfur

#### Micronutrients

- Zinc
- Boron
- Iron
- Manganese
- Copper
- Chloride
- Nickel
- Molybdenum





Nutrients are best applied when the tree can use it efficiently in amounts that will not leach past the root zone.

First application of fertilizer during spring when rapid growth occurs followed by applications throughout the growing season and post harvest

# Average Crop Requirement 68 > 28 > 15 > 1.4 > 1

lbs of N exported for every 1000 lbs of crop

Walnut

**Stone Fruit** 

Citrus



Pistachio

Almond

# Initial budget and adjustment

- Estimate demand:
  - Last year's yield, this year's estimated yield, tree age
  - Measure and account for N inputs (fertilizer, water, soil, amendments)
  - Adjustments:
  - Revised yield estimate and leaf sampling



## Average Crop Requirement

# 68 lbs of N exported for every 1000 lbs of crop

Where did this estimate come from?



## UC Nitrogen Rate Study

- Methods
- 8-10 year old trees, excellent productivity
- 15 trees per treatment, 6 replicates
- Nitrogen sourced with CAN-17 and UAN-32
- N applied in 4 fertigations 20%, 30%, 30%, and 20% for February, April, June, and October
- Leaf and nut samples pulled multiple times during season
- Field and kernel weights for 4 lb sub-samples determined

## UC Nitrogen Rate Study: Yield Effect

|      |            | UAN 32  |         |         |         |         | CAI     | N 17    |         |
|------|------------|---------|---------|---------|---------|---------|---------|---------|---------|
| Year | Irrigation | 125 lbs | 200 lbs | 275 lbs | 350 lbs | 125 lbs | 200 lbs | 275 lbs | 350 lbs |
| 2009 | Drip       | 2689 b  | 2977 b  | 3327 ab | 3507 a  | 2512 b  | 2634 b  | 3064 b  | 3605 a  |
|      | Fanjet     | 2776 b  | 3111 al | 3263 ab | 3380 a  | 3143    | 3130    | 3248    | 3216    |
| 2010 | Drip       | 2859 c  | 3426 b  | 3909 ab | 4332 a  | 2624 c  | 3191 ba | 3967 ab | 3995 a  |
|      | Fanjet     | 2872 b  | 3581 a  | 3810 a  | 3776 a  | 3030 b  | 3410 ak | 3993 a  | 3898 a  |
| 2011 | Drip       | 3811 c  | 4272 b  | 4643 a  | 4735 a  | 3640 c  | 4336 b  | 4864 a  | 4852 a  |
| 5    | Fanjet     | 3870 b  | 4014 b  | 4480 a  | 4425 a  | 3803 c  | 4159 b  | 4452 a  | 4398 a  |

#### **Conclusions:**

P<0.05, differing letters mean different statistical groupings

Maximal yields reached with 275 lb, no gain from 350 lb treatment;

No difference between nitrogen source

No difference between irrigation system

## UC Nitrogen Rate Study: Nitrogen Removal

|                |           |      | N Removed/1000 |
|----------------|-----------|------|----------------|
| Site           | Variety   | Year | kernel lbs     |
| Modesto        | Nonpareil | 2009 | 62             |
| (185 lbs/acre) |           | 2010 | 58             |
| Madera         | Nonpareil | 2009 | 69             |
| (250 lbs/acre) |           | 2010 | 76             |
| Arbuckle       | Nonpreil  | 2009 | *              |
| (190 lbs/acre) |           | 2010 | 51             |
| Belridge 2     | Nonpareil | 2009 | 62             |
| (275 lbs/acre) |           | 2010 | 62             |

Average N removed/1000 kernel lbs – 62 lbs (assume ~68)

## UC Nitrogen Rate Study: Nitrogen Use Coefficient

## NUE = Nitrogen Removed Nitrogen Applied

| N Rate (lb/ac) | Drip | Fan Jet |
|----------------|------|---------|
| 125            | 1.43 | 1.30    |
| 200            | 1.03 | 1.03    |
| 275            | 0.93 | 0.88    |
| 350            | 0.82 | 0.70    |

Almond NUE ~70%

### Rate and Timing 'Demand': Almond Example



From dormancy to mid-March there is very little N uptake.

Uptake commences at mid-leaf out and is essentially complete by hull split.

#### Recommended N Split:

20% Leaf Out-Fruit Enlargement

30% Fruit Enlargement 30% Kernel Fill

20% Hull-split through early Post-Harvest

# **Almond Nitrogen Timing**

- Should be soil dependent
  - Sandier soils should wait until leaf out
  - Clay, Silt, Loam soils may apply earlier
- 80% should be delivered before hull-split, 20% in the post harvest
  - Majority should be prior to kernel fill
- Example program: 20% March, 30% April, 30% May, 20% August/September

## Pistachio



UC CE University of California Agriculture and Natural Resources Cooperative Extension Mature pistachio tree is relatively determinate in growth pattern.

Majority of nutrients are partitioned to fruit.



Brown and Siddiqui

## Determining Rates/Needs

## Nutrient removal Per 1000 lbs (CPC yield)

- Valuable for estimating demand or replacing nutrient export
- Provides insight into efficiencies
  - N removal 28 lbs per 1000
  - K removal 25 lbs per 1000
  - P removal 3 lbs per 1000

# Nitrogen Applications in Pistachios

#### Timing of uptake:

- Spring Flush
  - 33% of budget
- Nut Fill
  - 66% of budget
- Post Harvest
  - Applications to bring into sufficiency

#### **Determining need**

- Crop estimation
   should occur based on
   cropping history and
   cluster counts
- Applications of 28 lb of N for every 1000 lbs/ac

About 50:50 in off-year



# Nitrogen Management within **Pistachios**

Nitrogen Deficiency:

- Young leaves are pale and old leaves drop
- Reddish petioles and mid-ribs of the leaves







**Agriculture and Natural Resources** 

Cooperative Extension

## Nitrogen Applications in Pistachio

- Nitrogen assists with vegetative development, bud development, but does not put more buds on a tree
- Make limited applications through the spring (April-June), with the majority being applied in July
- Late season tissues should be in the 2.6-2.9% N range for young trees and greater than 2.3% N for mature trees
- Minimize postharvest applications to reduce frost risk



## Walnut





## Methods – NPK Demand Model





Slide: Katherine Jarvis-Shean

## Walnut N Rate Trials 2013-2015

| Site            | 2013 | 2014 | 2015 |
|-----------------|------|------|------|
| N Chandler      | 25   | 28   | 28   |
| D Chandler      | 29   | 30   | 34   |
| S Chandler      | 23   | 29   | 32   |
| N Tulare        | 27   | 29   | 23   |
| <b>D</b> Tulare | 30   | 31   | 31   |
| S Tulare        | 26   | 27   | 35   |
| Grand<br>Mean   |      | 29   |      |

Katherine Jarvis-Shean

## Nitrogen Added per Month 2013 & 2014, Chandler & Tulare



## Right Rate: Soil and Water Testing Reports

N is also supplied from soil, water, and other N sources including manures, composts, nitrogen fixing cover crops, etc

Testing provides more accurate accounting of N sources

Improves N Efficiency, reduces production costs and environmental impact





# Soil Sampling to establish N credits

- Should be conducted regularly
- 3-10 sub-samples from a identified depths for each paddock or block
- Sample active irrigation zone more frequently, deeper depths occasionally
- Be aware of different soil types within fields and sample differently.

## Almond soil analysis, sandy loam

Material: SOIL - ALMONDS GROWER: 805 KF - DRW 306

-

Submitted By: DAVID R. WOODRUFF

|            |         | -  |             | ••             |            |          |            |         |     |      |       |          |              |                   |       |      |       |      |      |      |      |
|------------|---------|----|-------------|----------------|------------|----------|------------|---------|-----|------|-------|----------|--------------|-------------------|-------|------|-------|------|------|------|------|
|            |         | %  |             |                |            | n        | neq/L-     |         |     |      | %     | LIME     |              |                   |       |      | -PPM- |      |      |      |      |
|            |         | SP | рН          | EC             | Ca         | Mg       | Να         | K       | Cl  | ESP  | CaCO3 | PRESENCE | В            | NO <sub>3</sub> N | PO₄P  | K    | Zn    | Mn   | Fe   | Cu   | SO₄S |
| DESCRIPTIC | ON      |    |             | d\$/m          | Sc         | il Solut | ion Co     | nstiuer | nts |      | QUANT | LP       |              |                   |       | AA   |       |      |      |      |      |
| 1. Weak    | er 0-15 | 28 | 4.9         | 0.67           | <u>4.9</u> | 1.3      | 0.5        | 0.1     |     | <1.0 |       |          | 0.1          | 8.8               | 16.7  | 188  | 0.2   | 32.1 | 36.3 | 1.1  | 55   |
| 2.         | 15-30   | 23 | 6.1         | 0.40           | 2.4        | 0.8      | 0.7        | 0.1     |     | <1.0 |       |          | 0.1          | 5.8               | 3.1   | 120  | 0.1   | 12.3 | 12.9 | 0.6  | 25   |
| 3.         | 30-45   | 25 | 6.6         | 0.50           | <u>3.3</u> | 0.6      | 0.8        | 0.1     |     | <1.0 |       |          | 0.1          | 9.2               | 1.6   | 114  | 0.1   | 5.0  | 6.7  | 0.4  | 19   |
| 4.         | 45-60   | 26 | 7.6         | 0.63           | <u>3.7</u> | 0.8      | 1.9        | 0.1     |     | <1.0 |       | •        | 0.1          | 5.0               | 1.5   | 141  | 0.1   | 2.1  | 5.2  | 0.3  | 37   |
| 5.         | 60-72   | 28 | 7.9         | 0.62           | 1.7        | 0.5      | <u>3.9</u> | 0.1     |     | 4.0  |       | ++       | 0.1          | 5.8               | 2.0   | 116  | 1.0   | 1.6  | 3.2  | 0.3  | 35   |
| 6. Strong  | 0-15    | 23 | 5.1         | 0.58           | <u>3.6</u> | 1.4      | 0.6        | 0.1     |     | <1.0 |       |          | 0.1          | 4.8               | 17.7  | 231  | 0.2   | 39.5 | 29.7 | 0.8  | 49   |
| 7.         | 15-30   | 23 | 7.8         | 0.70           | <u>5.0</u> | 1.0      | 0.9        | 0.1     |     | <1.0 |       | ++       | 0.1          | 8.6               | 2.1   | 69   | 0.1   | 3.6  | 3.1  | 0.3  | 31   |
| 8.         | 30-45   | 19 | 7.9         | 0.75           | <u>5.2</u> | 0.8      | 1.1        | 0.1     |     | <1.0 |       | +++      | 0.1          | 9.2               | 1.5   | 73   | 0.1   | 2.0  | 4.9  | 0.2  | 23   |
| 9.         | 45-60   | 20 | 7.8         | 0.54           | <u>3.6</u> | 0.7      | 1.0        | 0.1     |     | <1.0 |       | •        | 0.1          | 5.0               | 1.2   | 78   | 0.1   | 1.2  | 4.0  | 0.2  | 20   |
| 10.        | 60-72   | 18 | 8.0         | 0.62           | <u>4.0</u> | 1.0      | 1.2        | 0.1     |     | <1.0 |       | •        | 0.1          | 4.1               | 1.3   | 51   | 1.5   | 1.2  | 5.6  | 0.1  | 26   |
| OPTIMUM I  | RANGES  |    | 6.0-<br>7.5 | <4.00<br>>0.60 | Ca>        | 2x (Mç   | g+Na)      | >0.4    | <10 | <5   | <1.5% |          | >0.2<br><1.5 |                   | >16.0 | >150 | >2.0  | >5.0 | >8.0 | >1.0 | >50  |

RED = LOW BLUE = HIGH DOMINANT SOLUBLE SALT IS UNDERLINED. SEE ENCLOSED INTERPRETATION GUIDES.

## Fertilizing Young Almond Orchards: Other Considerations?

#### Nitrate-nitrogen (NO<sup>3</sup>-N) in the soil:

NO<sup>3</sup>-N concentration (ppm) \* 2 \* soil sample thickness (in.) N (lbs/acre) = 6 inches

| Depth         | 5 PPM         | 10PPM | / | 15 PPM | 20 PPM |
|---------------|---------------|-------|---|--------|--------|
| 0-6″          | 10            | 20    |   | 30     | 40     |
| 0-12″         | 20            | 40    |   | 60     | 80     |
|               |               |       |   |        |        |
| University of | of California |       |   |        |        |

Agriculture and Natural Resources

ESTIMATING SOIL N CREDIT: The lab reports an average 3 ppm  $NO_{3-N}$  down to a 4 foot depth for your fanjet irrigated almonds. How much available  $NO_{3-N}$  is in the profile?

At roughly 4 million lbs soil/ac-ft, and going down to 4 feet:

Total NO<sub>3-N</sub> = 3.0 parts/million\*4 million lb/ac-ft\*4 ft = 48 lb/ac

### BUT ONLY IN THE WETTED AREA OF THE ROOTZONE

### FINAL N CREDIT = 48 LB/AC \* 60% WETTED ROOTZONE VOLUME \* 70% NUE = 20 LB/AC



# Water Sampling

- Water should be sampled to determine contribution of N from water
  - Well and surface water
- Water sampling should occur at various times of the year
  - Wells should run 30 minutes prior to sampling





## Source of N in irrigation water

#### Nitrate-nitrogen (NO<sup>3</sup>-N) in the water:

N (lbs/acre inch) = NO<sup>3</sup>-N concentration (ppm) \*0.23

|                     |       |       |        |        | _ |
|---------------------|-------|-------|--------|--------|---|
| Acre inches applied | 3 PPM | 5 PPM | 10 PPM | 15 PPM |   |
| 1                   | 0.7   | 1.15  | 2.3    | 3.45   |   |
| 6                   | 4.1   | 6.9   | 13.8   | 20.7   |   |
| 12                  | 8.3   | 13.8  | 27.6   | 41.4   |   |
| 24                  | 16.6  | 27.6  | 55.6   | 82.8   |   |
| 48                  | 33.2  | 55.2  | 112    | 166    |   |
|                     |       |       |        |        |   |

## Cover crops and residues

Residue N content predicts N mineralization behavior



- Greatest activity occurs in the initial 6-8 weeks after incorporation
- Soil temperature / moisture effects can be significant

## Estimating N content of a cover crop

| Cove | r crop total N  | Predicted   | available N |
|------|-----------------|-------------|-------------|
|      | lbs N / ton dry | 4 weeks     | 10 weeks    |
| % N  | matter          | lbs N / ton | dry matter  |
| 1    | 20              | <0          | 0           |
| 1.5  | 30              | 3           | 9           |
| 2.0  | 40              | 7           | 14          |
| 2.5  | 50              | 12          | 20          |
| 3.0  | 60              | 19          | 28          |
| 3.5  | 70              | 28          | 37          |

OSU Organic Fertilizer and Cover Crop Calculator

Sullivan and Andrews, 2012

https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw636.pdf

#### ANNUAL NITROGEN BUDGET

|                       | Member ID# <u>1234</u>                                                                                                             | APN: <u>111-00-222</u>                                                                                                                                                                                                                                                                                        |                     |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
|                       | Owner/mgr                                                                                                                          | Field # A, B, C                                                                                                                                                                                                                                                                                               |                     |
|                       | CROP NITROGEN DEMAND<br>Crop Nitrogen Needs / Uptake                                                                               | NITROGEN SUPPLY Credits and Application                                                                                                                                                                                                                                                                       | ons                 |
| Rate<br>and<br>Source | Crop<br>Expected yield (Lbs of<br>production/ acre)<br>Nitrogen Crop Needs to meet<br>expected yield (lbs of Nitrogen<br>per acre) | Nutrients: Total N applied to field         Nitrogen fertilizers         (conventional and organic)         Spring         Summer         Fall         Foliar fertilizers         Other fertilizers         Manure         Compost         Bacterial extracts/Compost teas         Other nutritional products | Time and<br>Place   |
|                       |                                                                                                                                    | Soil Nitrogen Credits       Soil N ppm <sup>3</sup> Nitrogen from previous legume crop                                                                                                                                                                                                                        | Nitrogen<br>Credits |
|                       |                                                                                                                                    | Crop N needs:<br>Balance<br>Ratio                                                                                                                                                                                                                                                                             |                     |

## N budget

| N source                                             | N budget for 3000 lb<br>Cropload |
|------------------------------------------------------|----------------------------------|
| Crop N removed                                       | 3*68= <b>204</b>                 |
| N credits (irrigation water<br>+ compost) @ 70% NUE  | -57                              |
| Net Crop N requirement<br>after credits              | 147                              |
| Total fertilizer N for the season to apply (70% NUE) | 210=(147/0.7)                    |
| Extra N to apply due to 70% efficiency               | 63=(210-147)                     |

Right Time: When during the growing season should I apply the 210 lbs of N fertilizer?

(Given 4 fertigation periods through year).

| % of Total | lbs of N                           |
|------------|------------------------------------|
| 20         | 42                                 |
| 30         | 63                                 |
| 30         | 63                                 |
| 20         | 42                                 |
|            | % of Total<br>20<br>30<br>30<br>20 |

<u>+ 210 lbs of N</u>

## Adjust for changing yield estimates and efficiency



#### University of California, Division of Agriculture and Natural Resources Fruit & Nut Research & Information Center University of California UCDAVIS **FRUIT & NUT RESEARCH & INFORMATION** Home About Find an Expert Weather-Related Models Websites of Interest **FNRIC Blog** HOME Nitrogen Prediction Models for Almond and Pistachio EXTENSION CLASSES N & K Prediction Model for Pistachio WEATHER-RELATED MODELS These models are based on 1) Guidelines for Pistachio Early-Season Sampling and In-Season Chilling Accumulation Models research conducted through Nitrogen Application Maximizes Productivity, Minimizes Loss (pdf). Advanced Sensing and By Muhammad Ismail Siddiqui & Patrick Brown Prune Chilling Prediction Management Technologies to 2) Estimate pistachio tree demand: Pistachio Model for Optimize resource Use in Nitrogen Prediction Models for Calculating Nitrogen Demand Almond and Pistachio Deciduous Tree Crops, a 4year, multi-state project. For 3) Interpret early season pistachio leaf samples: Pistachio Irrigation Scheduling project details, including Prediction Model (PPM). The Pistachio Prediction Model (PPM) is investigative team, an update released July 2014 in Excel format. PPM is also Harvest Prediction for Peaches, methodology and support, incorporated in the N & K Prediction Model for Pistachio linked in Plums & Nectarines see project link. item 2) above. Almond Hull-Split Prediction Pistachio Bloom Cast Nitrogen Management Tools for Almond About CIMIS Weather Stations 1) Guidelines for Early Season Sampling and In-Season Nitrogen Budgeting (pdf) Station Map & Information 2) An integrated model that calculates your N budget utilizing predicted yield, irrigation water, amendment and leaf nutrient samples can be found at: https://www.sustainablealmondgrowing.org FIND AN EXPERT Note: This is a joint UC Davis, Almond Board and SureHarvest web site. You will be requested to enter an FRUIT & NUT INFORMATION email address which will only be used to send you a password for access. The site will not retain your data unless you specifically request it to do so. EDUCATIONAL RESOURCES: INDIVIDUAL CROPS 3) Interpret early season almond leaf samples: Download these spreadsheets: N-Prediction Model for Almond (22K) and N-Prediction Model for Almond: large datasets (317K) from this page: Crop Nutrient ORCHARD MANAGEMENT Status & Demand in Almond. The website https://www.sustainablealmondgrowing.org also contains FRUIT & NUT CENTER UPDATES the tools to conduct the N prediction procedure. http://fruitsandnuts.ucdavis.edu/Weather Services/Nitrogen

Enter Search lenns

Prediction Models for Almond and Pistachio/

## **Tissue Sample Analysis**

• Send to a reputable lab

- Order a FULL NUTRIENT ANALYSIS (N, P, K, B, Ca, Zn, Cu, Fe, Mg, Mn, S) and application of the UCD-ESP program if early season sampling
- Submit for testing within 24 hours or dry as soon as possible



## **Tissue Sample Analysis**

|                                                                | ALMOND                                                 | PISTACHIO                        | WALNUT                 |  |  |
|----------------------------------------------------------------|--------------------------------------------------------|----------------------------------|------------------------|--|--|
| Sampling date                                                  | April, July                                            | May, Mid-July<br>to early August | May?,<br>Mid-July      |  |  |
| # OF TREES                                                     | 18-28, 90 ft<br>apart                                  | 18-28, 75 ft<br>apart            | 29, 90 ft apart        |  |  |
| <pre># leaves per tree (non- fruiting well exposed spur)</pre> | 5-8                                                    | 4-10 terminal<br>leaflets        | 6 terminal<br>leaflets |  |  |
| Combine<br>leaves                                              | Group similar soils, irrigation blocks, varieties etc. |                                  |                        |  |  |

# Interpreting Tissues and Adjusting Management Plan

|                                          | ALMOND            | PISTACHIO         | WALNUT            |
|------------------------------------------|-------------------|-------------------|-------------------|
| % N sufficiency<br>range early<br>season | 3.5%              | April             | In<br>development |
| Mature trees                             | 2.2 – 2.          | 5% July           | 2.3 – 2.7% July   |
| Excessive                                | > 3.5 %<br>> 2.6% | % April<br>% July | > 3.2 % July      |

Too much N provides little or no beneficial yield response! Consider reducing or eliminating late season N applications if tissue analysis in excessive range

### Nitrogen in Plants: Excess N Example

#### Almond hull rot incidence increased as N increased:



F0, F1, F2 = Zero, Single, and Double Fruited Spurs.

(Elana Peach-Fine, MSc. 2013)

# Modifying the plan example: Almonds

• It is May 1<sup>st</sup>. You have already applied half of your planned fertilizer (by early spring during fruit growth).

You collected leaves in April and the model prediction for July was for "adequate or excessive N". You also re-estimate your yield, but it is down from 3,000 to 2000 kernel lbs/ac.

Time to adjust?



# N budget

| N source                                             | N budget for 3000 lb<br>Cropload | N budget for 2000 lb<br>Cropload |  |
|------------------------------------------------------|----------------------------------|----------------------------------|--|
| Crop N removed                                       | 3*68= <b>204</b>                 | 2*68= <b>136</b>                 |  |
| N credits (irrigation water<br>+ compost) @ 70% NUE  | -57                              | -57                              |  |
| Net Crop N requirement<br>after credits              | 147                              | 79                               |  |
| Total fertilizer N for the season to apply (70% NUE) | 210=(147/0.7)                    | 112=(79/0.7)                     |  |
| Extra N to apply due to<br>70% efficiency            | 63                               | 33                               |  |
| UC Iniversity of California                          |                                  |                                  |  |



## How am I going to fix this?

| Timing                              | % of Total | lbs of N<br>(3000# est.) | Lbs of N<br>(2000# est.) |
|-------------------------------------|------------|--------------------------|--------------------------|
| Early Spring                        | 20         | 42                       | 42                       |
| Fruit Growth                        | 30         | 63                       | 63                       |
| Kernel Fill                         | 30         | 63                       |                          |
| Hull split or Early<br>Post-Harvest | 20         | 42                       | 3                        |
| Total for season                    | 100        | 210                      | 112                      |

## How am I going to fix this?

| Timing                              | % of Total | lbs of N<br>(3000# est.) | Lbs of N<br>(2000# est.) |
|-------------------------------------|------------|--------------------------|--------------------------|
| Early Spring                        | 20         | 42                       | 42                       |
| Fruit Growth                        | 30         | 63                       | 63                       |
| Kernel Fill                         | 30         | 63                       | 0                        |
| Hull split or Early<br>Post-Harvest | 20         | 42                       | 7-8                      |
| Total for season                    | 100        | 210                      | 112                      |

## Take home messages

- Annual N applications should be determined based on historical yield performance, tissue sampling, and overall canopy conditions
- More N will not increase flower buds on the tree or compensate for poor practices that impact nut development



## Take home messages

- Consider your N credits
- Get a good yield estimate
- Re-estimate your N budget several times/season
- Orchards use less N after harvest than before
- The longer you wait to adjust your fertility plan, the smaller the chances of fixing a problem
- Treat each orchard separately



# Fertilizing Young Almond Orchards

#### Fertilizing Considerations:

- What type of fertilizer to apply?
- How much should be applied?
- How much should be applied in a single application?
- What are the other concerns for young orchards?



**University** of **California** Agriculture and Natural Resources

## First Year Fertilizer Studies: Merced County

Sandy loam soil, irrigated with micro-sprinklers, acidic soils, medium cation exchange capacity – 4 ozs total N, 6 applications of 1 oz/tree



#### **University** of **California** Agriculture and Natural Resources

## Fertilizing Young Almond Orchards:



 3-4 ozs of actual N per tree for the first growing season, applied across the whole season

## Fertilizing Young Almond Orchards: What rate?

- Study suggest somewhere between 3-4 ozs of Nitrogen per tree
  - Supported earlier work of John Edstrom
  - Supports Patrick Brown's work of 20-30 lbs/acre of vegetative growth requirement

| Rate/Tree | 18'x22' (110) | 16'x22' (123) | 14'x22' (141) |
|-----------|---------------|---------------|---------------|
| 3 oz      | 20 lbs N      | 23 lbs N      | 27 lbs N      |
| 4 oz      | 28 lbs N      | 31 lbs N      | 35 lbs N      |



## Fertilizing Young Almond Orchards: Efficiency Considerations



Application Efficiency of systems for young trees is dependent upon delivery to development root system.

**University** of **California** Agriculture and Natural Resources

## Fertilizing Young Almond Orchards: How much?

#### For 2<sup>nd</sup> leaf or older:

- Nitrogen needs look to be around 25-30 pounds for growth
- Needs to be added to crop requirements if yielding under 2000 lbs/acre



#### **University** of **California** Agriculture and Natural Resources

## Fertilizing Young Almond Orchards: How much?

BE CONSERVATIVE: Many little feeds are better than one "slug."

#### No More than one oz of N per tree's age for any application

- 1 year old: one oz of N per fertilization
- 2 year old: two ozs of N per fertilization

## WHY?



## Fertilizing Young Almond Orchards: How much?

#### Lanky Growth



Nitrogen Burn



**University** of **California** Agriculture and Natural Resources

## Fertilizing Young Pistachio Orchards

First Leaf 2nd Leaf 3rd Leaf 4th Leaf 5th Leaf 6th Leaf 7<sup>th</sup> Leaf

0 - 0.1 pounds/tree 0.15 - 0.2 pounds/tree 0.25 - 0.35 pounds/tree 0.5 - 0.6 pounds/tree 100 - 120 pounds/acre 120 - 130 pounds/acre 135 – 150 pounds/acre

UC CE University of California Agriculture and Natural Resources Cooperative Extension

## Fertilizing Young Walnut Orchards

| Tree age                               | N application rate |                          |            |
|----------------------------------------|--------------------|--------------------------|------------|
|                                        | (lbs/acre)         | (lbs/tree) <sup>1)</sup> | (oz/tree)  |
| First season                           | 10 - 20            | 0.2 - 0.3                | 2 - 5      |
| Second season                          | 25 - 50            | 0.4 - 0.8                | 6 - 12     |
| Third season                           | 50 - 100           | 0.8 - 1.5                | 12 - 25    |
| Fourth season                          | 63 - 125           | 1 - 1.9                  | 16 - 31    |
| Fifth season                           | 75 - 150           | 1.2 - 2.3                | 18 - 37    |
| 1) The application r<br>65 trees/acre. | ate per tree is    | based on a tree          | density of |



# Thank you!

Mae Culumber <u>cmculumber@ucanr.edu</u> 559-241-7526

https://ucanr.edu/sites/Nut\_Crops/

