Grapevine Irrigation and Nitrogen Management

George Zhuang

Viticulture Farm Advisor UC Cooperative Extension - Fresno County

Vineyard Irrigation and Sustainability – Dr. Larry Williams, UC Davis

- Maintain productivity over time
- Maximize fruit quality
- Increase vineyard water use efficiency or decrease water footprint (in general, if the vineyard is irrigated any reduction in applied water will increase WUE, decrease water footprint).
- Minimize/maximize soil water depletion (function of soil type and rooting depth, cover crop management)
- Some of the above factors will be a function of location in California and price of grapes

How to Make Irrigation Decisions? - Dr. Larry Williams, UC Davis

- When should one initiate irrigations at the beginning of the season?
- How much water should one apply?
- How does the design of your irrigation system affect the ability to irrigate your vineyards?
- Are there deficit irrigation practices to minimize production loss and maximize fruit quality?

When to Start?

- Visual assessment
- Soil moisture
- Plant water stress

Visual Assessment

- Budbreak
- Shoot tip
- Leaf
- Tendril
- Inflorescence/berry

Soil Moisture

- Tensiometer (centibar)— measures the attraction of soil to its water. Soil-water suction or tension is a measure of the *soil's matric potential*.
- Gravimetric (%) taking a known volume of soil and weighing it first and then taking its dry weight.
- Neutron probe, capacitance sensors, TDR are used to measure soil volumetric water content (θ_v).

Soil Moisture

Plant Water Stress

- Pressure chamber
- Sap flow sensor

Irrigation starts when midday leaf water potential reaches -10 bars

How Much to Irrigate?

- Evapotranspiration (ET)
 - Historical ET
 - Crop ET (ETc): ETc = ETo × Kc, Dr. Larry Williams, UC Davis
 - Actual Crop ET (ETa): surface renewal, e.g., Tule Technology

Grapevine ET

- $ETc = ETo \times Kc$
- ETo from CIMIS Stations
- Kc
 - Measuring canopy cover
 - Estimate Kc by using GDD

Kc=(0.017 × Shaded percentage of field)

Grapevine Kc

• Estimate Kc by using GDD (Dr. Larry Williams, UC Davis)

Trellis/Canopy type	Row Spacing (ft)	Kc Equation
VSP	7	Kc=0.74/(1+e^(-(x-525)/301))
	8	Kc=0.65/(1+e^(-(x-525)/301))
CA Sprawl	10	Kc=0.84/(1+e^(-(x-325)/105))
	11	Kc=0.76/(1+e^(-(<mark>x</mark> -325)/105))
Quad-cordons	11	Kc=0.93/(1+e^(-(x-300)/175))
	12	Kc=0.85/(1+e^(-(x -300)/175))

Too Much Work?

University of California Cooperative Extension Fresno County Viticulture

UCCE Home Contact Us

Home

San Joaquin Valley Grape Symposium Slides

Vit Tips Newsletter

Vine Lines Newsletter

Grape Production

Production Cost

Pests and Diseases

Irrigation Scheduling

Links

550 E. Shaw Avenue Ste. 210 Fresno, CA 93710 Phone: <u>(559) 241-7515</u> Fax: (559) 241-7539

Grape Weekly ET Reports

2018 Weekly ET Reports

The California Department of Water Resources and the University of California Cooperative Extension have teamed up to provide Weekly ET Reports to agricultural water users. Reports include water use information for a variety of crops. Reports will be posted every Friday or Saturday for next week's guidelines.

PRINT

Weekly ET Reports for grapes use raisin grape (7' \times 11' vine/row spacing with 566 vines/acre) and wine grape (7' \times 10' vine/row spacing with 622 vines/acre on "California Sprawl" trellis) as examples. Acre-inch and gallons per vine will be reported this year. Growers might apply differently according to the vine/row spacing and trellis type in your vineyard.

04052018 FresnoEast Weekly Evapotranspiration Report

04122018 Fresno Weekly Evapotranspiration Report

04192018 Fresno Weekly Evapotranspiration Report

04262018 Fresno Weekly Evapotranspiration Report

05032018 Fresno Weekly Evapotranspiration Report

05102018 FresnoEast Weekly Evapotranspiration Report

HEALTHY FOOD SYSTEMS + HEALTHY ENVIRONMENTS + HEALTHY COMMUNITIES + HEALTHY CALIFORNIANS

University of California

Agriculture and Natural Resources

UCCE/DWR Weekly Crop Water Use Report

Making a Difference for California

		nated Crop	OISTURE LOS Evapotranspirat 8 through 07/05/1	ion or ET _c)					
Crops (Leafout Date)		8 Madera II	***		#39 Parlier		ŧ	86 Lindcov	e
	o/29- 7/5 Water Use	Accum'd Seasonal Water Use	7/6-7/12 Estimated ETc	6/29- 7/5 Water Use	Accum'd Seasonal Water Use	7/6- 7/12 Estimated ETc	6/29- 7/5 Water Use	Accum'd Seasonal Water Use	7/6-7/12 Estimated ETc
Almonds (3/16) *	1.97	20.45	1.90	2.07	20.64	1.89	2.03	19.88	1.89
Pistachio (4/21) * **	2.08	10.68	2.04	2.18	10.85	2.03	2.14	10.62	2.03
Citrus (2/1)	1.26	18.71	1.20	1.30	18.78	1.19	1.27	18.12	1.19
Raisin Grapes (3/16) (11 ft. row spacing)	1.62	13.86	1.55	1.69	13.94	1.54	1.66	13.46	1.54
Winegrapes (3/16) (10 ft. spacing on California Sprawl Trellis)	1.80	14.50	1.76	1.88	14.60	1.75	1.85	14.17	1.75
Walnuts (4/4)	1.82	15.75	1.83	1.92	15.91	1.82	1.88	15.37	1.82
Stone Fruit (3/16)	1.72	14.74	1.69	1.82	14.86	1.68	1.78	14.40	1.68
Past 7 days precipitation (inches)		0.00	S.		0.00			0.00	
Accumulated precipitation (inches) (1/1/2018)		6.33			4.96			3.32	

Dates in parentheses above, indicate leaf out or starting date for ET accumulation for the specific crop

* Estimates are for orchard floor conditions where vegetation is managed by some combination of strip applications of herbicides, frequent mowing or tillage, and by mid and late season shading and water stress. Weekly estimates of soil moisture loss can be as much as 25 percent higher in orchards where cover crops are planted and managed more intensively for maximum growth.

** Very vigorous, non-salt affected peak season pistachio Kc can be as high as 1.19 - resulting in about 8% greater water use than shown in these tables.

*** CIMIS station #188 Madera II has been taken out of service due to a conversion of the pasture to permanent crops. For the remainder of 2018 irrigation season Historical Average ETo will be used for the weekly report.

1	PAST WEEK	LY APPLI	ED WATER	R IN INCHE	ES, ADJUST	FED FOR E	FFICIENC	Y-				
Crops		#188 Made	ra II	6		#39 Parlier	0			#86 Lindco	ve	
System Efficiency >>	65%	75%	85%	95%	65%	75%	85%	95%	65%	75%	85%	95%
Almonds (3/16)	3.0	2.6	2.3	2.1	3.2	2.8	2.4	2.2	3.1	2.7	2.4	2.1
Pistachio (4/21)	3.2	2.8	2.4	2.2	3.4	2.9	2.6	2.3	3.3	2.9	2.5	2.3
Citrus (2/1)	1.9	1.7	1.5	1.3	2.0	1.7	1.5	1.4	2.0	1.7	1.5	1.3
Raisin Grapes (3/16) (11 ft. row spacing)	2.5	2.2	1.9	1.7	2.6	2.3	2.0	1.8	2.6	2.2	2.0	1.7
Winegrapes (3/16) (10 ft. spacing on California Sprawl Trellis)	2.8	2.4	2.1	1.9	2.9	2.5	2.2	2.0	2.8	2.5	2.2	1.9
Walnuts (4/4)	2.8	2.4	2.1	1.9	3.0	2.6	2.3	2.0	2.9	2.5	2.2	2.0
Stone Fruit (3/16)	2.6	2.3	2.0	1.8	2.8	2.4	2.1	1.9	2.7	2.4	2.1	1.9

1 The amount of water required by a specific irrigation system to satisfy evapotranspiration. Typical ranges in irrigation system efficiency are: Drip, 80%-95%; Micro-sprinkler, 80%-92%, Sprinkler, 70%-85%; and Border-furrow, 50%-75%.

	PAST W	EEKLY A	PPLIED W	ATER IN G	ALLON PH	ER TREE O	OR VINE					
Crops		#188 Made	ra II	2		#39 Parlier	0			#86 Lindco	ve	
Almonds 115 Trees/A	708	614	543	496	756	661	567	519	732	638	567	496
Pistachio 106 Trees/A	797	698	598	548	847	722	648	573	822	722	623	573
Citrus 110 Trees/A	469	420	370	321	494	420	370	346	494	420	370	321
Raisin Grapes 566 Vines/A	120	106	91	82	125	110	96	86	125	106	96	82
Winegrapes 622 Vines/A	122	105	92	83	127	109	96	87	122	109	96	83
Walnuts 76 Trees/A	1000	857	750	679	1072	929	822	715	1036	893	786	715
Stonefruit 172 Trees/A	410	363	316	284	442	379	332	300	426	379	332	300
For further information concerning all counties receiving	g this report, contact the Fresno C	o. Farm Ad	visor's office	at (559) 24	1-7526.			\checkmark	A.S.			

How to Schedule Irrigation?

- Obtain gallons/vine/week from crop ET reports, historical ET...
- Number of emitters per vine, e.g., 2 emitters/vine
- Flow rate per emitter, e.g., 0.5 gallon/hour
- Hours/week = (gallons/vine/week)/(number of emitters/vine × flow rate)

Need Deficit Irrigation?

- It depends on your production goal:
 - Yield
 - Quality
- Overall, berry size/yield is maximized with applied water at 80% of ETc (Dr. Larry Williams, UC Davis)

Use ET to Schedule Irrigation

• Midday leaf water potential well responds with ETc in San Joaquin Valley

Do I Need Fertilizer?

- Vine vigor
- Canopy
- Fertilizer history
- Soil and root conditions
- Laboratory analysis
 - ✓ Soil
 - ✓ Plant tissue: Petiole and Leaf blade
 - ✓ Water

Soil Sampling

No.	Description	%	units	dS/m	meq/l	meq/l	meq/l	meq/l	%	T/ac-6"	+\-	lbs/ac-6"	mg/l	mg/kg	mg/kg	mg/kg	mg/kg	mg/k
		SP	рН	EC	Ca	Mg	Na	CI	ESP	GR	Lime	Lime	В	NO ₃ -N	PO ₄ -P	к	Acid K	Zn
	RL>	0.50	1.0	0.01	0.1	0.1	0.1	0.1	0.1	0.1		500	0.1	1.0	2.0	2.0	40.0	0.1
	NAPT Methods>	S1.00	S1.10	S1.20	S1.60	S1.60	S1.60	S1.40	Calc.			S2.50	S1.50	S3.10	S4.10	S5.10		S6.10
c	Handbook 60>									Hndbk 60-22d	Hndbk 60-23a						SSSA,p5 61 mod	
1	0-1	41	7.6	1.76	11.1	4.0	4.3	2.5	1.1		++		0.6	15	23	399		5.3
2	1-2	42	7.7	1.58	8.9	3.8	5.2	1.5	1.8		+		0.7	7	17	389		2.1
3	2-3	41	7.8	0.94	3.3	1.7	4.5	1.4	2.8		++		0.6	5	8	303		0.8
0		39	7.8	1.57	6.1	3.6	7.0	2.4	3.3		++		0.7	14	3	214		0.6

Limits of soil analysis

 Not the sole indicator of vine nutrient needs or availability; many other factors

Grapevine Tissue Sampling

- Evaluating for fertilizer needs
- Sample at full bloom (2/3 caps fallen)
- Petioles from 60–100 vines
- Sample leaf opposite a basal cluster

Bloom N Critical Values

Bloom petiole values*

	Petiole Levels (NO3-N, ppm)
Deficient	< 350
Questionable	350 to 500
Adequate	500 to 2,000
Excessive	> 2,000
Тохіс	> 8,000

* NO3-N critical values are based solely on Thompson Seedless on own roots

Lab #	Block/Field	Total Nitroger (%)	Nitrate- Nitrogen (ppm)	Calcium (%)	Magnesium (%)	Phosphorus (%)	Potassium (%)	Manganese (ppm)	Zinc (ppm)	Boron (ppm)	Sodium (%)	Chloride (%)	Iron (ppm)	Copper (ppm)
3977	Block 28, Petiole Pinot Grigio		3,429	1.3	0.88	0.12	3.5	28	64	33	0.01	0.10	42	9
	Optimum Range	0.8 - 1.1	600 - 800		0.30 - 0.80	0.15 - 0.30	1.5 - 2.5	25 - 80	25 - 50	40 - 80	0.01 - 0.30	0.01 - 0.9	35 - 150	4 - 10

Visual Assessment

 How about bloom petiole analysis under the questionable values?

N Application Timing

Late spring or early summer

✓One month after bud break

✓ Right after fruitset

Post-harvest

✓ Intact, healthy leaf area

 \checkmark > 3 weeks before leaf fall

N Application Amount

- Crop removal ≈ 30 lbs of N in 10 tons of crop which are removed from the vineyard
- Rate, lbs N/acre under *drip irrigation*:

Rate, lbs N/acre*	Vine Vigor
0	High to excess vigor
10 - 20	High to medium
20 – 30	Medium
30 - 40	Medium to low

*Apply in increments over time

Don't Forget Irrigation!

- Raisin/wine grape generally requires 2-3 acre foot of water annually, and table grape requires 4 acre foot in San Joaquin Valley.
- N content in water varies based on sources: surface water vs. well water
- Consider N input from irrigation, when budgeting the vineyard N amount.

Irrigation Water Analysis

	Date	Time	EC	Ca	Mg	Na	SAR	Adj SAR	CI	CO3+ HCO3	SO4	в	NO ₃ -N	Fe	Mn	pН	L.I.	TDS	agricultural us calculations
	Sampled	Sampled	dS/m	meq/L	meq/L	meq/L			meq/L	meq/L	meq/L	mg.	mg/L	ng/L	mg/L	unit	Calc	mg/L	
RL>			0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.05	0.1	0 10	0.02	1.0 to 14.0	-2.0 to 2.0	10.0	***
SM>			2510 B				Calc	Calc		2320 B						4500H B	2330 B	2540 C	1 day
EPA>				200.7	200.7	200.7			300.0		300.0	20 .7	300.0	20.7	200.7				
Analysis Date:			9/21/18	9/25/18	9/25/18	9/25/18	9/25/18	9/26/18	9/24/18	9/21/18	9/24/18	9/25 18	9/24/18	9/25/18	9/25/18	9/21/18	9/26/18		
Analysis Time:			16:55	11:15	11:15	11:15	11:15		13:45	16:55	13:45	11: 5	13:45	1 :15		10.00		_	calculated from pitrat
Westlands	9/21/18	14:00	0.55	0.87	1.19	3.20	3.20	3.60	2.90	1.40	0.60	0.12	0.5	<0.10)	<2	.73	3	Ibs/AcFt Is/Ac
													V						\cup
	Date	Time	EC	Ca	Mg	Na	SAR	Adj SAR	CI	CO3+ HCO3	SO4	в	NO3-N	Fe	Mn	рН	L.I.	TDS	Nitrogen agricultural us calculations
	Date Sampled	Time Sampled	EC dS/m	Ca meq/L	Mg meq/L	Na meq/L	SAR		CI meq/L	CO ₃ + HCO ₃ meq/L	SO ₄ meq/L	B mg_	NO ₃ -N mg/L	Fe ng/L					agricultural us
RL→	Sampled				CONCERNMENT OF		SAR 0.1								Mn	pН	L.I. Calc	TDS	agricultural us
SM>	Sampled		dS/m	meq/L 0.1	meq/L 0.1	meq/L 0.1		SAR	meq/L 0.1	meq/L	meq/L 0.1	mg _ 0.(5	mg/L 0.1	ng/L .10	Mn mg/L 0.02	pH unit	L.I. Calc	TDS mg/L	agricultural us
SM> EPA>	Sampled		dS/m 0.01	meq/L	meq/L	meq/L	0.1	SAR 0.1	meq/L	meq/L 0.1	meq/L	mg_	mg/L	ng/L	Mn mg/L	pH unit 1.0 to 14.0	L.I. Calc -2.0 to 2.0	TDS mg/L 10.0	agricultural us
SM> EPA> Analysis Date:	Sampled		dS/m 0.01	meq/L 0.1 200.7 11/6/17	meq/L 0.1	meq/L 0.1	0.1	SAR 0.1	meq/L 0.1	meq/L 0.1 2320 B 11/6/17	meq/L 0.1	mg _ 0.(5	mg/L 0.1	ng/L .10	Mn mg/L 0.02 200.7 11/6/17	рН unit 1.0 to 14.0 4500Н В 11/6/17	L.I. Calc -2.0 to 2.0	TDS mg/L 10.0	agricultural us calculations
SM> EPA>	Sampled		dS/m 0.01 2510 B	meq/L 0.1 200.7	meq/L 0.1 200.7	meq/L 0.1 200.7	0.1 Calc	0.1 Calc	meq/L 0.1 300.0	meq/L 0.1 2320 B	meq/L 0.1 300.0	mg_ 0.(5 200.7	mg/L 0.1 300.0	ng/L .10 200.7	Mn mg/L 0.02 200.7	рН unit 1.0 to 14.0 4500Н В	L.I. Calc -2.0 to 2.0 2330 B	TDS mg/L 10.0	agricultural us calculations
SM> EPA> Analysis Date:	Sampled		dS/m 0.01 2510 B 11/6/17	meq/L 0.1 200.7 11/6/17	meq/L 0.1 200.7 11/6/17	meq/L 0.1 200.7 11/6/17	0.1 Calc 11/6/17	0.1 Calc	meq/L 0.1 300.0 11/4/17	meq/L 0.1 2320 B 11/6/17	meq/L 0.1 300.0 11/4/17	mg _ 0.15 200.7 11/0/17	mg/L 0.1 300.0 11/4/17	ng/L .10 2 0.7 11 6/17	Mn mg/L 0.02 200.7 11/6/17	рН unit 1.0 to 14.0 4500Н В 11/6/17	L.I. Calc -2.0 to 2.0 2330 B	TDS mg/L 10.0	agricultural us calculations
SM> EPA> Analysis Date:	Sampled		dS/m 0.01 2510 B 11/6/17	meq/L 0.1 200.7 11/6/17	meq/L 0.1 200.7 11/6/17	meq/L 0.1 200.7 11/6/17	0.1 Calc 11/6/17	0.1 Calc	meq/L 0.1 300.0 11/4/17	meq/L 0.1 2320 B 11/6/17	meq/L 0.1 300.0 11/4/17	mg _ 0.15 200.7 11/0/17	mg/L 0.1 300.0 11/4/17	ng/L .10 2 0.7 11 6/17	Mn mg/L 0.02 200.7 11/6/17	рН unit 1.0 to 14.0 4500Н В 11/6/17	L.I. Calc -2.0 to 2.0 2330 B	TDS mg/L 10.0	agricultural us calculations
SM> EPA> Analysis Date: Analysis Time:	Sampled	Sampled	dS/m 0.01 2510 B 11/6/17 13:56	meq/L 0.1 200.7 11/6/17 10:58	meq/L 0.1 200.7 11/6/17 10:58	meq/L 0.1 200.7 11/6/17 10:58	0.1 Calc 11/6/17 10:58	SAR 0.1 Calc 11/14/17	meq/L 0.1 300.0 11/4/17 2:13	meq/L 0.1 2320 B 11/6/17 13:56	meq/L 0.1 300.0 11/4/17 2:13	mg 0.15 200.7 11/0/17 10.58	mg/L 0.1 300.0 11/4/17 2:13	ng/L .10 2 0.7 11.6/17 19:58	Mn mg/L 0.02 200.7 11/6/17 10:58	pH unit 1.0 to 14.0 4500H B 11/6/17 13:56	L.I. Calc -2.0 to 2.0 2330 B 11/14/17	TDS mg/L 10.0	agricultural us calculations

Conclusion

- Use plant tissue analysis coupled with visual assessment to determine: do I need N fertilizer?
- Budget the vineyard N based on:
 - ✓ Yield: *3 lbs N of 1 ton of fresh fruit*
 - ✓ Irrigation: 2-3 acre foot for raisin/wine, 4 acre foot for table grape
- Yield is maximized with applied water at 80% of estimated ETc.

Acknowledgement

- Dr. Larry Williams, UC Davis
- Dr. Matthew Fidelibus, UC Davis
- Gaia Nafziger, UCCE Fresno County
- SJV wine growers and wineries

Questions?

